AMERICAN UNIVERSITY OF BEIRUT Mathematics Department Math 101 – Quiz 2 Fall 2010 – 2011

Name:....

ID:....

Please circle your section number:

Instructor: Silvana Jaber

Section 1	Section 2	Section 3	Section 4
F @ 9:00	F @ 10:00	F @ 11:00	F @ 12:00

Instructions:

- 1. Write your **NAME** and **AUB ID** number above.
- 2. Solve the problems on the white sheets at the appropriate place. Use the pink booklet for scratch work only.
- 3. You may use the back pages of the white sheet to solve or complete the solution of a problem.

PART I: Fill in the blanks.

- 1. If $(x) = \frac{1}{\sqrt{x-2}}$, then the domain of g is _____. The value of g(11) is
- 2. The graph of the function $y = 3 x^2$ is symmetric about the _____.
- 3. If f(-x) = -f(x), the function y = f(x) is said to be an ______ function. The graph of an odd function is symmetric about the ______.
- 4. To shift the graph of the line y = -2x + 1 horizontally 3 units to the right, we rewrite its equation as ______.
- 5. If $f(x) = \sqrt{x-1}$ and (x) = x+1, then (fog)(x) =_____. The domain of the composite is _____.
- 6. Evaluate: $\cos\left(-\frac{\pi}{6}\right) =$ _____, $\sec\left(\frac{\pi}{3}\right) =$ _____, $\csc\left(-\frac{\pi}{3}\right) =$ _____.
- 7. Consider the graph of the function f(x) below,

 $\lim_{x \to -1^+} f(x) =$ ____ and $\lim_{x \to -1^-} f(x) =$ ____.

8. Suppose $\lim_{x \to c} f(x) = 7$ and $\lim_{x \to c} g(x) = -3$. Then $\lim_{x \to c} \frac{g(x)}{f(x) - g(x)} = \underline{\qquad}$.

PART II:

1.a) Find the domain and range of the function $f(x) = 2 - \sqrt{x-1}$.

1.b) Say whether the function $f(x) = \frac{x}{x^2+1}$ is even, odd, or neither. Give reasons for your answer.

2. Find a formula for the function graphed below.

3.a) Express $\cos\left(\frac{\pi}{6} + x\right) - \sin\left(\frac{3\pi}{2} - x\right)$ in terms of $\sin(x)$ and $\cos(x)$.

3.b) A triangle has sides a = 2 and b = 3 and angle $C = 45^{\circ}$. Find the length of side c facing angle C.

4. For
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$
 it is known that $1 \le \frac{\tan x}{x} \le \frac{1}{\cos x}$. Find $\lim_{x \to 0} \frac{\tan x}{x}$.

5.a) Find
$$\lim_{x\to 3} \frac{x-3}{x^2-9}$$

5.b) Find
$$\lim_{x \to -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1}$$

6. Consider the function
$$(x) = \begin{cases} x^2, & 0 \le x < 1 \\ 3, & x = 1 \\ -2x + 3, & 1 < x < 2 \end{cases}$$

Does $\lim_{x \to 1} f(x)$ exist? Justify.

- 7. Let f be the function with domain $\left(-\frac{\pi}{2},\infty\right)$ be given by $f(x) = \begin{cases} x^2 - x + \frac{\sin(3x)}{x}, & x > 0\\ r + \frac{\tan x}{x} - \frac{1}{2}, & -\frac{\pi}{2} < x \le 0 \end{cases}$
 - a) Calculate $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$.

b) Find the value of r which makes $\lim_{x\to 0} f(x)$ exists.